Exercise 87

Mailing a Package The post office will accept only packages for which the length plus the "girth" (distance around) is no more than 108 in . Thus for the package in the figure, we must have

$$
L+2(x+y) \leq 108
$$

(a) Will the post office accept a package that is 6 in . wide, 8 in . deep, and 5 ft long? What about a package that measures 2 ft by 2 ft by 4 ft ?
(b) What is the greatest acceptable length for a package that has a square base measuring 9 in. by 9 in.?

Solution

For a package that is 6 inches wide and 8 inches deep and 5 feet long, $y=6$ and $x=8$ and $L=60$.

$$
L+2(x+y)=60+2(8+6)=88 \leq 108
$$

The post office will accept this package. For a package that is 2 feet by 2 feet by 4 feet, $x=24$ and $y=24$ and $L=48$.

$$
L+2(x+y)=48+2(24+24)=144>108
$$

The post office will not accept this package. For a package that has a square base measuring 9 inches by 9 inches, $x=9$ and $y=9$. To find the largest length, set

$$
L+2(9+9)=108
$$

and solve for L.

$$
L=72
$$

The greatest acceptable length is 72 inches.

